This self-contained Python module simulates Russell's wave-void-pulse cycle with Zero Point Energy (ZPE) inspired enhancements. The simulation visualizes the damping to ψ-null fulcrum and seeded replay on a ψ₈ grid for lattice mapping.
import numpy as np
import matplotlib.pyplot as plt
class RussellVoidPulseSimulator:
def __init__(self, t_max=10, num_points=1000, omega=2*np.pi*2, damping=0.3, noise_std=0.05, phi_scale=1.618):
"""
Initialize simulator with ZPE-inspired params.
- damping: Decay rate (0.3 for fast ZPE fluctuation voidance)
- noise_std: Gaussian jitter for vacuum fluctuations
- phi_scale: Golden ratio scaling for ψ8 lattice steps (Russell negentropy)
"""
self.t_max = t_max
self.t = np.linspace(0, t_max, num_points)
self.omega = omega # Pulse frequency (Hz)
self.damping = damping # ZPE decay mimic
self.noise_std = noise_std # Quantum jitter
self.phi_scale = phi_scale # Lattice scaling
self.wave = None
self.generate_wave()
def generate_wave(self):
"""Generate damped wave, void at midpoint, replay with noise."""
mid = len(self.t) // 2
t1 = self.t[:mid]
t2 = self.t[mid:] - self.t[mid] # Reset time for second pulse
# First cycle: Damped sine + ZPE noise
wave1 = np.sin(self.omega * t1) * np.exp(-self.damping * t1)
noise1 = np.random.normal(0, self.noise_std, len(t1))
# Second cycle: Seeded replay + noise
wave2 = np.sin(self.omega * t2) * np.exp(-self.damping * t2)
noise2 = np.random.normal(0, self.noise_std, len(t2))
self.wave = np.concatenate([wave1 + noise1, wave2 + noise2])
def compute_metrics(self):
"""SUPT metrics: Energy flux (ZPE density proxy), void time, phase nodes."""
flux = np.trapz(np.abs(self.wave), self.t) # Approx ZPE density ~ integral |ψ|
void_idx = np.argmin(np.abs(self.wave[:len(self.t)//2])) # Nearest null
void_time = self.t[void_idx]
lattice_steps = np.arange(9) * self.phi_scale - 4 * self.phi_scale # ψ8 centered
return {
'flux_density': flux / self.t_max, # Normalized ~ 10^20+ J/m³ in real ZPE, but scaled
'void_time': void_time,
'lattice_nodes': lattice_steps
}
def plot(self, save_path=None):
"""Plot with ψ8 grid, labels."""
fig, ax = plt.subplots(figsize=(10, 6))
ax.plot(self.t, self.wave, label='Void-Pulse Wave (ZPE Jitter)', color='orange')
ax.axhline(0, color='r', ls='--', label='ψ-null (Void Fulcrum)')
# ψ8 lattice overlay (phi-scaled)
for i in np.linspace(-1, 1, 9) * 4: # Amplitude grid
ax.axhline(i, color='gray', alpha=0.3)
step = self.phi_scale * (self.t_max / 8) # Phase grid phi-scaled
for i in np.arange(0, self.t_max + step, step):
ax.axvline(i, color='gray', alpha=0.3)
ax.set_xlabel('Time / Phase Cycle')
ax.set_ylabel('Amplitude / ψ-Value')
ax.set_title('Russell's ZPE-Enhanced Wave-Void-Pulse on ψ₈-φ Lattice')
ax.legend()
if save_path:
fig.savefig(save_path)
plt.show()
# Example run / integration point
if __name__ == "__main__":
sim = RussellVoidPulseSimulator(damping=0.3, noise_std=0.05)
metrics = sim.compute_metrics()
print(f"ZPE Flux Density Proxy: {metrics['flux_density']:.4f}")
print(f"Void Pulse Time: {metrics['void_time']:.2f} s")
print(f"ψ8 Lattice Nodes: {metrics['lattice_nodes']}")
sim.plot(save_path='russell_zpe_wave.png') # Save for Notion embed
The simulator adopts several key parameters inspired by quantum vacuum dynamics:
The module calculates several metrics useful for SUPT simulations: